第1章 Flink认知篇 试看
本章中,将带领大家来一起认识大数据处业界中主流的分布式计算框架有哪些,进而引出为什么要学习的Flink框架、Flink是什么、发展史、特点;了解业务常见的实时处理框架有哪些,并知道在大厂中都在使用Flink做什么。帮助大家对Flink有初步得认识~~ ...
共 7 节 (58分钟)
收起列表
1-1 课前须知,这里有你需要了解得一切 (09:02)
试看
1-2 课程目录 (01:39)
1-3 业界大数据分布式计算框架 (04:22)
1-4 初识Flink (10:47)
1-5 什么是Flink (12:12)
1-6 【科普小贴士】Flink发展史&特点&行业应用
1-7 学习一个新框架的方法论 (19:58)
第2章 Flink本地开发快速上手篇 试看
本章中,将带领大家,通过Maven+IDEA构建基于Flink的开发环境,快速构建我们的第一个基于Flink的实时和离线分析案例。
共 17 节 (78分钟)
收起列表
2-1 课程目录 (01:38)
2-2 Maven部署 (09:20)
2-3 IDEA社区版和旗舰版区别 (03:17)
2-4 基于官方提供的命令来构建Flink项目 (10:25)
2-5 基于IDEA构建多module的Flink项目 (11:31)
2-6 Flink编程模型 (04:19)
2-7 基于Flink开发第一个实时处理案例之需求分析 (04:41)
2-8 基于Flink开发第一个实时处理案例之功能实现一 (11:44)
2-9 基于Flink开发第一个实时处理案例之功能实现二 (01:38)
2-10 基于Flink开发第一个实时处理案例之功能实现三 (05:14)
2-11 基于Flink开发第一个批处理案例之需求分析 (01:11)
2-12 基于Flink开发第一个批处理案例之功能实现 (03:52)
2-13 基于Flink开发第一个批处理案例之功能实现重构 (02:39)
2-14 基于Flink编程套路总结 (03:14)
试看
2-15 本章重难点总结 (02:20)
2-16 作业节
2-17 作业节
第3章 Flink部署篇
本章中,将带领大家一起来完成Flink环境的部署,理解Flink的架构,如何提交作业到Flink集群运行,并认识Flink UI上核心参数的含义和使用策略。
共 10 节 (53分钟)
收起列表
3-1 课程目录 (01:51)
3-2 【环境配置】云主机开通及配置
3-3 Flink架构 (11:59)
3-4 Flink部署 (16:38)
3-5 Flink UI参数讲解 (04:53)
3-6 通过命令行方式提交&展示&取消Flink作业 (09:53)
3-7 通过UI方式提交&展示&取消Flink作业 (03:56)
3-8 关于并行度的补充 (03:02)
3-9 作业节
3-10 作业节
第4章 Flink实时处理核心API基础篇
本章中,将向大家介绍,基于Flink的DataStream API内置的三大核心要素的编程:Source、Tranformation、Action
共 21 节 (100分钟)
收起列表
4-1 课程目录 (01:24)
4-2 DataStream API概述 (07:38)
4-3 StreamExecutionEnvironment详解 (07:45)
4-4 Source概述 (08:56)
4-5 Source API编程之Socket及并行度 (05:11)
4-6 Source API编程之并行集合及并行度 (06:13)
4-7 【核心组件部署】ZooKeeper&Kafka部署
4-8 Source API编程之对接Kafka数据 (07:18)
4-9 Transformation概述 (06:41)
4-10 Transformation算子之map (11:12)
4-11 Transformation算子之filter (05:19)
4-12 Transformation算子之flatMap (05:18)
4-13 Transformation算子之keyBy (06:47)
4-14 Transformation算子之reduce (08:42)
4-15 Sink概述 (02:31)
4-16 Sink之print&printToErr及并行度 (09:00)
4-17 作业节
4-18 作业节
4-19 作业节
4-20 作业节
4-21 作业节
第5章 Flink实时处理核心API进阶篇 试看
本章中,将向大家介绍,基于Flink的DataStream API的三大核心要素的的高级特性,以及如何进行自定义功能的开发。
共 20 节 (100分钟)
收起列表
5-1 课程目录 (03:18)
5-2 MapFunction&RichMapFunction认识 (06:19)
5-3 通过RichMapFunction认识对应的生命周期方法 (07:25)
5-4 SourceFunction代码层级 (03:23)
试看
5-5 自定义单并行度Source (09:15)
5-6 自定义多并行度Source (01:44)
5-7 自定义Source读取MySQL数据 (13:15)
5-8 Transformation算子之union (04:14)
5-9 Transformation算子之connect (07:37)
5-10 Transformation算子之CoMapFunction (06:10)
5-11 Transformation算子之CoFlatMapFunction (02:17)
5-12 自定义分区器 (10:22)
5-13 自定义MySQLSink功能实现 (10:33)
5-14 自定义MySQLSink需求分析 (04:20)
5-15 RedisSink功能实现 (09:02)
5-16 【核心组件部署】Redis部署
5-17 作业节
5-18 作业节
5-19 作业节
5-20 作业节
第6章 【项目实战第一篇】基于Flink+ClickHouse构建大数据实时分析项目实战
本章节将实现项目实战的第一篇,从实时项目的架构、选型出发,介绍项目背景以及需求,并使用Flink已学知识点进行数据清洗、各种不同维度的功能开发、结果入库、自定义函数开发等
共 23 节 (92分钟)
收起列表
6-1 课程目录 (03:17)
6-2 同类产品分析 (06:07)
6-3 项目架构 (06:15)
6-4 项目子工程创建 (01:41)
6-5 字段说明 (05:25)
6-6 用户行为日志类定义 (03:01)
6-7 功能一需求分析 (03:18)
6-8 功能一实现之数据清洗 (04:59)
6-9 功能一实现之统计分析 (04:56)
6-10 功能一实现之统计结果入Redis (05:30)
6-11 功能一实现之拓展 (04:08)
6-12 需求二之功能分析 (06:51)
6-13 需求二之IP解析测试 (06:30)
6-14 功能二实现之自定义UDF函数解析IP地址 (04:55)
6-15 功能二实现之统计分析及入库 (03:35)
6-16 需求二之异步IO补充 (14:09)
6-17 前面两个需求可能会遇到的问题提炼 (04:55)
6-18 重难点总结 (02:22)
6-19 作业节
6-20 作业节
6-21 作业节
6-22 作业节
6-23 作业节
第7章 Flink时间语义及Window API篇
本章中,我们将从流处理过程中的三大时间语义出发,通过场景及案例分析帮助大家理解时间三兄弟是什么意思、三兄弟对于业务逻辑处理的影响、Window的分类、以及基于增量的全量的Window Function编程。
第8章 Flink Watermark
本章中将对Flink的Window编程中最核心的Watermark进行介绍。会带领大家认识,基于EventTime、Window、Watermark的综合使用,以及如何处理延迟或者乱序数据 。
第9章 Flink状态管理篇
本章带领大家学习在Flink流处理中为什么要引入State?State分类有哪些?如何自定义实现State功能?Flink中的Checkpoint机制有什么作用?重启策略以及StateBackend在生产上如何使用等等硬核内容。
第10章 【项目实战第二篇】基于Flink+ClickHouse构建大数据实时分析项目实战
本章节将实现项目实战的第二篇,将带领大家来学习在Flink中如何实现分组TopN的功能开发,以及使用Flink结合布隆过滤器,对项目实战第一篇的功能进行重构达到更好的性能。
第11章 【项目实战第三篇】基于Flink+ClickHouse构建大数据实时分析项目实战
本章节将实现项目实战的第三篇,也是整个项目中最重要得一篇。不管是采用哪种实时处理框架,对于如何做到一次性精准消费都是一个非常重要且棘手的问题,这不仅是面试过程中也是在实际开发过程中必须要掌握的。本章节要彻底解决这些问题,并对代码进行重构封装,达到以后能完全复用的目的。...
第12章 初识ClickHouse
本章节将介绍当前非常火的OLAP框架ClickHouse。会带领大家认识ClickHouse的适用场景、部署、如何使用CH的SQL语言对大数据场景进行统计分析表引擎、ClickHouse 核心 API编程,以及如何整合各种不同数据源数据。
第13章 【项目实战终极篇】基于Flink+ClickHouse构建大数据实时分析项目实战
本章节将实现项目实战的第四篇,也就是终极一战!本章中第一个案例将使用Flink对接ClickHouse,将处理过的明细数据写入ClickHouse,后续统计分析直接使用SQL完成,借以大大提升开发效率以及降低开发成本;第二个案例将使用Flink CEP完成恶意攻击风控告警,提高安全性。...
第14章 Flink DataSet篇
前面的章节主要是用流的角度进行阐述,本章中将介绍如何使用Flink的DataSet API完成离线场景的开发。通过本章得学习,相信大家能更好得理解Flink是如何能够支持批流一体的解决方案的。
第15章 Flink Table&SQL API篇
本章将介绍如何使用Table API进行业务处理,以及如何更方便的使用SQL的方式基于Flink进行处理。【注意:SQL的方式在生产上用的非常多,因为SQL对于开发人员来说,门槛极低,只要使用SQL就可以进行大数据的统计分析操作,这是一件极好极好的事情】 ...
第16章 Flink版本升级篇
本章中,将带领大家知晓大数本章节将介绍Flink版本升级时的注意事项:如,代码兼容性、服务器环境注意事项等。
第17章 【拓展】基于Flink构建实时数仓项目实战
本章中,将拓展讲解基于Canal、Kafka、Flink来构建实时数仓,掌握数仓的常用分层方式,业务数据的实时采集、双流join等
第18章 总结和展望
本章节将对课程讲解的核心内容进行总结,并提出对未来发展的展望。
本课程持续更新中